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Abstract—Mobile health (mHealth) applications are 

increasingly relying on artificial intelligence (AI) to provide 

accurate and real-time decision support for healthcare delivery. 

However, achieving the optimal balance between processing time 

and accuracy remains challenging, especially for interactive 

applications that rely on cloud computing for scalability and 

performance. This study investigates the impact of data 

preprocessing techniques on the performance of two widely used 

machine learning algorithms, Support Vector Machine (SVM) and 

k-Nearest Neighbors (KNN), in cloud-based mHealth systems. We 

evaluate the effects of various scaling methods and dimensionality 

reduction techniques, on processing time and model accuracy. Our 

results demonstrate that preprocessing significantly improves 

model performance, with SVM achieving a precision of 0.72 and a 

processing time of 0.087 ms using StandardScaler, while KNN 

demonstrates the fastest processing times when paired with robust 

preprocessing. These findings underscore the importance of 

optimizing both data preparation and algorithmic efficiency for 

interactive mHealth applications. By enhancing model accuracy 

and reducing latency, this research contributes to the development 

of cost-effective, real-time mobile health systems that improve user 

experience and decision-making in healthcare. 
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I. INTRODUCTION 

The rapid advancements in mobile technology and AI have 
revolutionized the healthcare sector, giving rise to Mobile 
Health (mHealth) applications [1]. These applications leverage 
the portability of mobile devices and the analytical power of AI 
to provide real-time health monitoring, personalized 
diagnostics, and predictive analytics [2]. mHealth solutions have 
become indispensable tools in addressing global healthcare 
challenges, offering services such as remote patient monitoring, 
chronic disease management, and telemedicine consultations  
[3]. At the core of this transformation is the reliance on AI 
algorithms, which analyze vast amounts of data to deliver 
actionable insights. However, the computational demands of 
these algorithms often exceed the capabilities of mobile devices, 
especially in resource-constrained environments [4]. 

To address this limitation, cloud computing has emerged as 
a crucial enabler, providing scalable, cost-effective platforms 
that offload complex computations from mobile devices to 
powerful cloud servers [5]. By utilizing cloud platforms, 

mHealth applications can perform sophisticated AI-driven tasks 
such as processing high-dimensional data, running predictive 
models, and delivering real-time decision support without 
compromising the user experience. This synergy between AI 
and cloud computing allows for greater efficiency, enabling 
mHealth applications to cater to the growing demand for fast, 
reliable, and accurate healthcare solutions [6]. As mHealth 
continues to expand its reach, optimizing the interplay between 
AI and cloud platforms will be pivotal in meeting the 
performance, scalability, and cost requirements of these 
applications. 

In mHealth, real-time interactive mobile systems have 
become critical in delivering timely and accurate healthcare 
services, such as chronic disease management, remote patient 
monitoring, and emergency decision support [7]. These systems 
rely heavily on AI algorithms to process large volumes of health 
data, often under stringent time constraints. However, achieving 
the delicate balance between processing time and accuracy 
presents significant challenges. Mobile devices, constrained by 
limited computational resources, depend on cloud platforms to 
execute complex AI algorithms. 

This dependency [8] introduces latency concerns due to data 
transmission, processing, and response times, which can 
compromise the system's responsiveness—an essential feature 
for real-time health applications. Simultaneously, ensuring high 
accuracy is vital, as errors in AI predictions can lead to incorrect 
diagnoses or treatment decisions, directly impacting patient 
safety and trust. Additionally, the performance of AI models is 
heavily influenced by data preprocessing techniques, which are 
necessary for improving model efficiency but can also increase 
computational overhead [9]. For interactive mHealth systems, 
the trade-offs between optimizing preprocessing pipelines, 
minimizing cloud processing costs, and maintaining real-time 
responsiveness remain poorly addressed. Thus, the key 
challenge lies in optimizing AI model performance to deliver 
accurate and timely results while ensuring scalability and cost-
efficiency in cloud-based environments. Addressing these 
challenges is essential for advancing mHealth solutions and 
providing seamless, reliable healthcare services to users 
worldwide. 

This study addresses the key challenges of deploying AI in 
mHealth by focusing on the optimization of Support Vector 
Machine (SVM) and k-Nearest Neighbors (KNN) algorithms in 
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terms of data preprocessing, cloud integration, and real-time 
performance, with the goal of improving both patient outcomes 
and operational efficiency. SVM and KNN have been selected 
for their proven effectiveness in medical data classification, low 
implementation complexity, and robust performance on small to 
medium-sized datasets, which are common in mHealth 
applications. Their computational simplicity and compatibility 
with cloud-based architectures make them particularly suitable 
for real-time, scalable health systems that require both accuracy 
and efficiency. Moreover, the contrast between their learning 
paradigms—margin-based optimization for SVM versus 
instance-based learning for KNN—offers a valuable 
comparative framework for assessing preprocessing strategies 
and deployment trade-offs. 

The primary aim of this study is to evaluate and optimize the 
performance of SVM and KNN algorithms for interactive 
mHealth AI systems deployed on cloud infrastructure. 
Specifically, the study seeks to: 

 Analyze the Impact of Preprocessing Techniques: 
Investigate how various data preprocessing methods, 
such as scaling and dimensionality reduction, influence 
the accuracy and processing time of SVM and KNN 
models in a cloud-based environment. 

 Optimize Algorithm Efficiency: Identify preprocessing 
pipelines and configurations that achieve the best 
trade-off between accuracy and processing time, 
ensuring the feasibility of real-time decision-making for 
mHealth applications. 

 Enhance Scalability and Responsiveness: Explore how 
optimized AI models, combined with cloud computing 
resources, can improve the scalability and 
responsiveness of mHealth systems, ultimately reducing 
latency and enhancing user experience. 

Through these objectives, the study aims to provide 
actionable insights for designing cost-effective, accurate, and 
efficient mHealth systems that improve user experience and 
leverage the power of cloud-based AI for real-time healthcare 
delivery. 

This study is organized as follows: Following the 
introduction, the Section II provides a literature review to set the 
context. Section III presents the methodology. Section 
IVdiscusses the results; and Section V concludes the study. 

II. LITERATURE REVIEW 

AI applications in mHealth heavily rely on cloud computing 
to address the computational constraints of mobile devices, 
enabling advanced functionalities and seamless performance. 
Cloud platforms provide scalability, allowing them to process 
vast datasets and support a growing user base without 
compromising efficiency or performance. Additionally, cloud 
computing ensures secure data storage and facilitates easy 
access to patient information for authorized users, maintaining 
the privacy and integrity of sensitive health data [10]. These 
capabilities make cloud computing an indispensable backbone 
for AI-driven mHealth solutions, supporting their scalability, 
responsiveness, and security requirements. 

SVM and KNN are widely used machine-learning 
algorithms in health- related research due to their simplicity, 
robustness, and effectiveness in handling diverse types of 
medical data [11]. SVM excels in analyzing high-dimensional 
datasets, a common characteristic of medical records, and 
performs reliably even with small training datasets, thanks to its 
ability to create clear class boundaries through kernel functions. 
SVM has been successfully applied in diagnosing diseases such 
as diabetes, cancer, and cardiovascular conditions, often 
achieving high accuracy, as demonstrated with the PIMA Indian 
Diabetes dataset. Its application extends to medical image 
analysis, including tumor detection, brain abnormalities, and 
retinal scans, and to genomic and proteomic data, where it 
identifies genetic markers and classifies diseases based on gene 
expression. However, while SVM is highly effective when 
dataset margins are clear, it may struggle with imbalanced 
datasets unless enhanced with techniques like cost-sensitive 
learning [12]. KNN, on the other hand, is a non-parametric 
algorithm that relies on the proximity of data points, making it 
particularly suitable for heterogeneous medical datasets. It is 
valued in clinical settings for its simplicity and interpretability, 
with applications including disease classification (e.g., diabetes, 
heart disease), medical decision support through patient record 
comparisons, and patient similarity assessments for personalized 
treatment planning. While KNN performs well with smaller 
datasets and clean, normalized data, it becomes computationally 
intensive as dataset sizes grow, requiring preprocessing and 
dimensionality reduction techniques like PCA or LDA [13]. 
When comparing the two, SVM generally outperforms KNN in 
high-dimensional and smaller datasets due to its mathematical 
rigor and margin maximization principle. However, KNN offers 
simplicity and ease of implementation, making it attractive for 
specific applications despite its higher computational demands 
for large datasets. Both algorithms benefit from preprocessing 
techniques, such as normalization and dimensionality reduction, 
which significantly enhance their performance and make them 
highly applicable in health AI applications. Together, SVM and 
KNN provide complementary strengths, supporting diverse 
healthcare tasks, from diagnostics to personalized medicine. 

Research on SVM and KNN algorithms, and their 
optimization for mHealth applications challenges include the 
limited computational resources of mobile devices, the need for 
real-time processing, and the lack of detailed evaluations on 
integrating local preprocessing with cloud-based AI execution 
[14][15]. Existing studies also insufficiently address the 
application of preprocessing techniques to dynamic and 
heterogeneous mHealth datasets and overlook scalability and 
user experience for large user bases [16]. These gaps hinder the 
effective implementation of SVM and KNN in mHealth, where 
real-time accuracy, efficiency, and scalability are crucial [17]. 

III. METHODOLOGY 

A. Dataset Description: PIMA Indian Diabetes Dataset 

The PIMA Indian Diabetes dataset [18], sourced from the 
National Institute of Diabetes and Digestive and Kidney 
Diseases, is a widely used benchmark for machine learning 
studies in healthcare. It comprises medical data collected from 
768 female patients of Pima Indian heritage, aged 21 years or 
older. The dataset aims to predict the presence of diabetes based 
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on diagnostic measurements, making it particularly relevant for 
studies in mHealth applications. Table I summarizes the 
dataset's predictor variables. 

TABLE I. THE DATASET INCLUDES THE FOLLOWING PREDICTOR 

VARIABLES AND TARGET VARIABLE 

Feature Description Data Type 

Pregnancies Number of pregnancies. int64 

Glucose 
Plasma glucose concentration (mg/dL) 
after a 2-hour oral glucose tolerance test. 

int64 

Blood Pressure Diastolic blood pressure (mm Hg). int64 

Skin Thickness Triceps skinfold thickness (mm). int64 

Insulin 2-hour serum insulin (mu U/mL). int64 

BMI Body Mass Index (kg/m²). float64 

Diabetes Pedigree 
Function 

A score representing the likelihood of 
diabetes based on family history. float64 

Age Age of the individual. int64 

Outcome 
Binary target variable indicating 
diabetes diagnosis (1 = diabetic, 0 = 

non-diabetic). 

int64 

B. Data Preprocessing Techniques 

Preprocessing techniques are critical for improving 
the performance and efficiency of machine learning models as 
shown in Fig. 1. 

This study utilizes various preprocessing methods, including 
scaling techniques and dimensionality reduction methods, to 
prepare the data for effective application of SVM and KNN 
algorithms. These techniques address challenges such as feature 
imbalance, computational efficiency, and overfitting, ensuring 
optimized performance in cloud-based mobile health mHealth 
applications [19]. 

1) Data scaling techniques 

a) Standard Scaler (SS): The Standard Scaler technique 

is a data preprocessing method used to standardize the features 

of a dataset. It transforms the data such that it has zero mean 

and unit variance. This technique is commonly used in machine 

learning algorithms to ensure that all features are on a similar 

scale, which can improve the performance of the models. 𝑧 is 

the standardized value of a feature; 𝑥 is the original value of the 

feature; 𝜇 is the mean of the feature and σ is the standard 

deviation of the feature. A value 𝑥 is transformed (scaled) into 

𝜎 using Eq. (1): 

𝑧 =
𝑥−𝜇

𝜎


 

Fig. 1. Overview of various data preprocessing techniques. 

b) Min-Max Scaler (MMS): Min-max scaler is a data 

normalization technique that transforms the values of a dataset 

to a specific range, typically between 0 and 1. It is calculated 

using Eq. (2): 

 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛


where, 𝑋𝑠𝑐𝑎𝑙𝑒𝑑  is the scaled value, X is the original value, 
𝑋𝑚𝑖𝑛  is the minimum value in the dataset, and 𝑋𝑚𝑎𝑥  is the 
maximum value in the dataset. 

c) Maximum Absolute Scaler (MAS): The Maximum 

Absolute Scaler is a method used to transform numerical data 

into a range between 0 and 1. This is achieved by dividing each 

value by the maximum absolute value present in the dataset. It 

can be mathematically expressed asashown in Eq. (3): 

 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥

𝑚𝑎𝑥(|𝑥|)
(3) 

where, 𝑥  represents the original value and  𝑋𝑠𝑐𝑎𝑙𝑒𝑑  
represents the transformed value. 

d) Robust Scaler (RS): The three scaling techniques 

mentioned earlier are highly affected by outliers because they 

rely on each variable's mean or minimum and maximum values. 

However, the Robust Scaler aims to reduce the impact of 

outliers by centering the data on the median 𝑄2(𝑥) and scaling 

it based on the interquartile range, which is the difference 

between the first quartile 𝑄1(𝑥) and the third quartile 𝑄3(𝑥) of 

x, as shown in Eq. (4): 

 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑄2(𝑥)

𝑄3(𝑥) −𝑄1(𝑥)
(4)

e) Quantile Transformer (QT): The Quantile 

Transformer is a statistical technique that transforms a dataset's 

distribution to a desired target distribution by mapping original 

data values to new values. It is valuable for scenarios like data 

normalization, outlier mitigation, and preparation for statistical 

models. The Quantile Transformer can be represented by Eq. 

(5): 

𝑌 = (𝐹𝑡𝑎𝑟𝑔𝑒𝑡
−1 (𝐹𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 (𝑥)) )                  (5) 

where,  𝐹𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  is the cumulative distribution function 

(CDF) of the original dataset, and 𝐹𝑡𝑎𝑟𝑔𝑒𝑡
−1  is the inverse CDF of 

the desired target distribution. 
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f) Normalization (N): A normalizer standardizes values 

to a uniform scale, aiding comparison by removing scale 

disparities, often expressed as Eq. (6). This equation scales 

values from 0 to 1, adjusting the minimum to 0 and the 

maximum to 1. Other techniques may employ varied equation 

depending on data needs. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =
𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒
   (6) 

2) Dimension reduction techniques 

a) Principal Component Analysis (PCA): PCA is a 

widely used statistical technique in multivariate analysis, 

primarily employed for dimensionality reduction and data 

compression [20]. Its main goal is to identify patterns, 

emphasizing similarities and differences in the data while 

preserving most of the original variations. PCA achieves four 

main objectives: extracting relevant information, compressing 

data by retaining distinguishing features, simplifying data 

description, and enabling analysis of observational structure. 

Eq. (7), which calculates variance (var(x)), is integral to PCA. 

𝑣𝑎𝑟(𝑥) =
∑(𝑥𝑖−𝑥)

2

𝑁


b) Linear Discriminant Analysis (LDA): Linear 

Discriminant Analysis (LDA) is a statistical technique for both 

dimensionality reduction and classification [21]. It aims to find 

a linear combination of features that maximizes class 

separability by maximizing the ratio of between-class and 

within-class scatters. LDA is widely applied in pattern 

recognition, machine learning, and data mining, seeking a 

projection vector that optimizes between-class scatter while 

minimizing within-class scatter. The between-class scatter 

matrix  𝑆𝐵 is calculated by Eq. (8): 

 𝑆𝐵 = (𝑚𝑒𝑎𝑛(𝑋𝑐) − 𝑚𝑒𝑎𝑛(𝑋)) ∗ (𝑚𝑒𝑎𝑛(𝑋𝑐) − 𝑚𝑒𝑎𝑛(𝑋))
𝑇
 

 

where, mean (𝑋𝑐 ) is the mean vector of each class and 
mean(𝑋) is the mean vector of the entire dataset. 

The within-class scatter matrix  𝑆𝑤  is calculated using Eq. 
(9): 

 𝑆𝑤 = ∑(𝑋𝑖 − 𝑚𝑒𝑎𝑛(𝑋𝑖)) ∗ (𝑋𝑖 − 𝑚𝑒𝑎𝑛(𝑋𝑖))
𝑇
   

where, Σ represents the summation of all samples in each 
class. 

The goal of LDA is to find the projection vector w that 
maximizes Fisher's criterion, as given in Eq. (10): 

J(w) = (wT ∗ SB ∗ w)/(wT ∗ Sw ∗ w)

The solution to this optimization problem can be obtained by 
finding the eigenvectors corresponding to the largest 
eigenvalues of the matrix inverse of  ( 𝑆𝑤)−1 ∗ 𝑆𝐵 . Once the 
projection vector w is obtained, it can be used to project new 
samples onto the linear discriminant space for classification or 
dimensionality reduction purposes. 

c) SVM algorithm: SVM is an ML algorithm that finds 

the best line or plane to separate different classes of data points, 

as shown in Algorithm 1. It uses a subset of training data called 

support vectors to determine this line or plane. SVM can handle 

both linear and non-linear data by using different kernel 

functions. One of its advantages is its ability to handle high-

dimensional data without overfitting. It can also work well with 

small training samples. SVM has been extensively studied and 

improved with different techniques such as using different 

kernels and handling imbalanced datasets. Overall, SVM is a 

powerful and widely used technique for classification problems 

[22]. 

Algorithm 1: Pseudo code of the SVM algorithm 

Set 𝐼𝑛𝑝𝑢𝑡 = (𝑥𝑖 , 𝑦𝑖)  where 𝑖 = 1,2,3, … . , 𝑁 , 𝑥𝑖 = 𝑅𝑛 and 𝑦𝑖 =
{+1, −1}. 

Assign 𝑓(𝑋) = 𝜔𝑇𝑥𝑖 + 𝑏 =  ∑ 𝜔𝑇𝑥𝑖𝑁
𝑖=1 + 𝑏 = 0. 

Minimize the QP problem as, 𝜑(𝜔, 𝜀)  =
1

2
‖𝜔‖2 + 𝐶. (∑ 𝜀𝑖

𝑁
𝑖 ). 

Calculate the dual Lagrangian multipliers as 𝑚𝑖𝑛𝐿𝑝 =  
1

2
‖𝜔‖2 −

∑ 𝑥𝑖𝑦𝑖(𝜔𝑥𝑖 + 𝑏)𝑁
𝑖=1  +∑ 𝑥𝑖

𝑁
𝑖=1 . 

Calculate the dual quadratic optimization (QP) problem as 𝐿𝐷 =

∑ 𝑥𝑖
𝑁
𝑖=1 −

1

2
∑ 𝑥𝑖𝑥𝑗   𝑦𝑖𝑦𝑗(𝑥𝑖 , 𝑥𝑗)𝑁

𝑖,𝑗 . 

Solve dual optimization problem as ∑ 𝑦𝑖𝑥𝑖
𝑁
𝑖=1 = 0. 

Output the classifier as 𝑓(𝑋) = 𝑠𝑔𝑛 (∑ 𝑥𝑖𝑦𝑖(𝑥. 𝑥𝑖)𝑁
𝑖=1 +

∑ 𝑥𝑗𝑦𝑗(𝑥. 𝑥𝑗)𝑁
𝑖=1 ) 

d) KNN algorithm: K-Nearest Neighbors (KNN) is a 

classification algorithm that assigns the label of a classified data 

point to an unclassified data point that is closest to it. This is 

done by considering the majority class of its K nearest data 

points. The distance between data points is typically measured 

using Euclidean distance (DE) or Manhattan distance (DM) 

[23] as shown in Algorithm 2: 

Algorithm 2: Pseudo code of the KNN algorithm 

Input: X: training data, Y: class labels of X, K: number of nearest 

neighbors. 

Output: Class of a test sample x. 

Start  

Classify (𝑋, 𝑌, 𝑥) 

For each sample x do  

Calculate the distance: 𝑑(𝑥, 𝑋) = √∑ (𝑥𝑖 − 𝑋𝑖)2𝑛
𝑖=1  

End for 

Classify x in the majority class: 𝐶(𝑥𝑖) =

𝑎𝑟𝑔𝑚𝑎𝑥𝑘  ∑ 𝑥𝑗∈𝐾𝑁𝑁𝐶(𝑋𝑗 , 𝑌𝑘) 

End 

e) Experimental design: The experimental design 

systematically evaluates the performance of SVM and KNN 

models in cloud-based mHealth systems, focusing on how 

preprocessing techniques affect accuracy and processing time 

(Fig. 2). Initially, baseline testing is conducted without 

preprocessing to establish reference metrics, including 

accuracy, precision, recall, F1-score, and processing time, 

highlighting limitations like bias from feature magnitudes and 

inefficiencies from data redundancy. Next, the impact of 

scaling techniques, such as Standard Scaler, Min-Max Scaler, 

Robust Scaler, and Quantile Transformer, is assessed by 

applying each method to the dataset and evaluating 
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performance metrics. This step identifies effective scaling 

methods for reducing bias and improving efficiency. 

Dimensionality reduction techniques, including Principal 

Component Analysis (PCA) and Linear Discriminant Analysis 

(LDA), are then evaluated to understand their influence on 

computational cost and classification accuracy. PCA retains 

components with the most variance, while LDA maximizes 

class separability, both offering insights into trade-offs between 

efficiency and performance. Finally, combined testing explores 

the interaction between scaling and dimensionality reduction, 

with pipelines like Standard Scaler + PCA and Min-Max Scaler 

+ LDA being tested to optimize preprocessing for real-time 

mHealth applications. This comprehensive approach ensures a 

balance between accuracy and processing time, enabling 

scalable and efficient model deployment. 

 
Fig. 2. Experimental Design 

f) Metrics collected: Performance Metrics: Accuracy, 

precision, recall, F1-score. 

 Efficiency Metrics: Processing time (measured in 
milliseconds). 

 Trade-off Analysis: Evaluate the trade-offs between 
computational efficiency and model accuracy. 

g) Computational environment: The experiments were 

conducted in a computational environment designed to 

replicate typical resource-constrained scenarios found in 

mHealth applications. This setup ensures the findings apply to 

real-world cloud-based systems supporting mHealth platforms. 

 Hardware: Processor: AMD Ryzen 5 5500U CPU with 
Radeon Graphics, 2.10 GHz. Memory: 8 GB of RAM. 

 Software: Programming Language: Python 3.8. 

IV. RESULTS AND ANALYSIS 

The study evaluates the performance of SVM and KNN 
under various preprocessing scenarios, focusing on the 
following metrics: Processing Time (in milliseconds), 
Accuracy, Precision, Recall, and F1-Score. 

The experiments demonstrate how scaling techniques and 
dimensionality reduction methods affect the efficiency and 
accuracy of these algorithms when applied to a health-related 
dataset. 

A. Performance Without Preprocessing 

As shown in Table II, SVM performs better than KNN in 
terms of accuracy (0.71 vs. 0.69) and is faster (0.063 ms vs. 0.13 

ms). Without preprocessing, the data may contain bias and 
unnecessary information, making the model less efficient. This 
shows that preprocessing is important to improve speed and 
performance. 

TABLE II. METRICS FOR SVM AND KNN 

Metric Accuracy Precision Recall F1-Score 
Processing 

Time (ms) 

SVM 0.71 0.70 0.71 0.69 0.063 

KNN 0.69 0.69 0.69 0.69 0.13 

B. Performance only with Scaling Techniques 

Table III presents the impact of different scaling methods on 
the performance of SVM and KNN. Scaling significantly 
improves both accuracy and processing time for the two models. 
For SVM, the Min-Max Scaler achieves the highest accuracy 
(0.73) with a moderate processing time of 0.12 ms, while the 
Standard Scaler offers a good trade-off between accuracy (0.72) 
and faster processing (0.087 ms). In the case of KNN, the 
Standard Scaler provides the best accuracy (0.75) along with 
efficient processing (0.085 ms), making it particularly suitable 
for real-time applications. Although the Quantile Transformer 
yields moderate accuracy, its higher computational cost reduces 
its practicality. These results demonstrate that the choice of 
scaling method directly influences model performance and 
efficiency. 

TABLE III. METRICS FOR SVM AND KNN WITH SCALING TECHNIQUES 

Scaling 

Technique 

Standard 

Scaler 

MinMax 

Scaler 

Robust 

Scaler 

Quantile 

Transformer 

Metric 

A
ccu

racy
 

P
ro

cessin
g

 

T
im

e (m
s) 

A
ccu

racy
 

P
ro

cessin
g

 

T
im

e (m
s) 

A
ccu

racy
 

P
ro

cessin
g

 

T
im

e (m
s) 

A
ccu

racy
 

P
ro

cessin
g

 

T
im

e (m
s) 

SVM 0.72 0.087 0.73 0.12 0.66 0.13 0.71 0.42 

KNN 0.75 0.085 0.73 0.12 0.68 0.063 0.74 0.13 

C. Performance only with Dimensionality Reduction 

Table IV shows that LDA outperforms PCA for both SVM 
and KNN. SVM with LDA achieves higher accuracy (0.74) and 
faster processing (0.085 ms) than with PCA. KNN also performs 
better and faster with LDA (0.047 ms). LDA’s strength in 
maximizing class separability explains its superior results, 
making it the preferred choice for this dataset. 

TABLE IV. METRICS FOR SVM AND KNN WITH PCA AND LDA 

Metric 
SVM + 

PCA 

SVM + 

LDA 

KNN + 

PCA 

KNN + 

LDA 

Precision 0.70 0.73 0.64 0.69 

Recall 0.71 0.74 0.66 0.69 

F1-score 0.69 0.73 0.65 0.69 

Accuracy 0.71 0.74 0.66 0.69 

Processing time (ms) 0.092 0.085 0.1 0.047 
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D. Performance with Dimensionality Reduction and Scaling 

Techniques  

Table V shows that combining scaling and dimensionality 
reduction improves performance. For SVM with PCA, Min-
Max Scaler gives the best accuracy (0.73), while Standard Scaler 
is faster (0.087 ms). For KNN with PCA, Min-Max Scaler has 
the highest precision (0.75), but Robust Scaler is more efficient 
(0.063 ms). With LDA, Standard Scaler provides the best 
accuracy and fastest processing, especially for SVM (0.041 ms). 

TABLE V. METRICS FOR SVM WITH PCA AND SCALING TECHNIQUES 

Scaling 

Technique 
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Precision 0.71 0.72 0.42 0.71 0.66 0.72 

Recall 0.71 0.73 0.65 0.71 0.67 0.73 

F1-Score 0.71 0.73 0.65 0.71 0.67 0.73 

Processing 

time (ms) 
0.12 0.12 0.14 0.42 0.13 0.087 

TABLE VI. METRICS FOR KNN WITH PCA AND SCALING TECHNIQUES 

Scaling 

Technique 
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Precision 0.71 0.75 0.66 0.74 0.68 0.75 

Recall 0.69 0.73 0.66 0.74 0.68 0.75 

F1-Score 0.69 0.73 0.66 0.74 0.68 0.75 

Processing 

time(ms) 0.13 0.12 0.11 0.13 0.063 0.085 

Table VI shows that for KNN with PCA, Min-Max and 
Standard Scalers achieve the best metrics (0.75), with Standard 
Scaler being faster (0.085 ms). Robust Scaler is the most 
efficient (0.063 ms) but slightly less accurate. Normalizer 
performs worst (0.66). This highlights Standard Scaler as the 
best balance of accuracy and speed. 

TABLE VII. METRICS FOR SVM WITH LDA AND SCALING TECHNIQUES 

Scaling 

Technique 
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Precision 0.73 0.73 0.65 0.73 0.73 0.73 

Recall 0.74 0.74 0.68 0.74 0.74 0.74 

F1-Score 0.73 0.73 0.64 0.73 0.73 0.73 

Processing 

time(ms) 
0.063 0.08 0.1 0.12 0.085 0.041 

Table VII shows that for SVM with LDA, all scaling 
techniques except Normalizer achieve strong and consistent 
metrics (precision, recall, F1-score ≈ 0.73–0.74). Standard 
Scaler offers the best processing time (0.041 ms), making it the 
most efficient. Normalizer performs the worst across all metrics. 

These results highlight Standard Scaler as the most effective 
option when combining LDA with SVM. 

TABLE VIII. METRICS FOR KNN WITH LDA AND SCALING TECHNIQUES 

Scaling 

Technique 
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Precision 0.69 0.69 0.69 0.69 0.69 0.69 

Recall 0.69 0.69 0.69 0.71 0.69 0.69 

F1-Score 0.69 0.69 0.69 0.69 0.69 0.69 

Processing 

time(ms) 
0.07 0.072 0.063 0.084 0.047 0.032 

Table VIII shows that KNN with LDA performs consistently 
across all scaling techniques, with precision, recall, and F1-score 
around 0.69. Quantile Transformer slightly improves recall 
(0.71), while Standard Scaler provides the fastest processing 
time (0.032 ms). These results indicate that although 
performance is similar, Standard Scaler is the most efficient. 

Fig. 3(a) compares SVM and KNN accuracy and processing 
time with various scalers. Standard and Min-Max Scalers yield 
the highest accuracy, but Standard Scaler is fastest. Quantile 
Transformer is accurate but much slower. 

Fig. 3(b) presents the performance of SVM and KNN using 
PCA and LDA. Both dimensionality reduction techniques yield 
comparable results across precision, recall, F1-score, and 
accuracy. However, LDA shows better efficiency, especially 
with KNN, offering lower processing time. 

Fig. 3(c) shows SVM performance using different scaling 
techniques, with PCA Standard Scaler and MinMax Scaler 
achieving high precision, recall, and F1-score, while Standard 
Scaler has the lowest processing time. In contrast, Quantile 
Transformer offers good metrics but with the highest time cost. 

Fig. 3(d) shows that QuantileTransformer offers the best 
KNN performance but is the slowest, while RobustScaler is 
fastest with lower accuracy StandardScaler and MinMaxScaler 
provide a good balance between performance and processing 
time. 

Fig. 3(e) shows that QuantileTransformer gives the best 
SVM performance but with the highest processing time, while 
StandardScaler is the fastest with strong accuracy. Other scalers 
like MinMaxScaler and RobustScaler offer a balanced trade-off 
between performance and speed. 

Fig. 3(f) shows that QuantileTransformer gives the highest 
KNN performance with LDA but takes the longest time to 
process. StandardScaler is the fastest and still maintains strong 
performance. Other scalers like MinMaxScaler and 
RobustScaler also show consistent accuracy with lower 
processing times, indicating good overall efficiency. 

The findings in Fig. 3(a) to Fig. 3(f), highlight the practical 
implications of combining preprocessing with SVM and KNN 
to optimize mHealth applications. This approach enhances real-
world applicability in areas such as remote patient monitoring, 
enabling real-time analysis of wearable data; chronic disease 
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management, supporting early detection and personalized care; 
and telemedicine, improving the speed and reliability of virtual 
consultations. Faster processing times, such as 0.041 ms for 
SVM with LDA, ensure responsive systems that reduce delays 
in delivering critical insights, improving user trust and 
scalability through efficient resource utilization. Moreover, 
optimized preprocessing pipelines facilitate real-time 
predictions, enabling immediate feedback in critical scenarios 
like glucose monitoring or irregular heart rhythm detection. This 
responsiveness empowers healthcare professionals to make 
timely interventions, enhancing patient outcomes and advancing 
the efficiency of mHealth solutions. 

 
(a). Accuracy and processing time for scaling technique. 

 
(b). Performance metrics with PCA and LDA. 

 
(c). SVM Performance metrics and processing time for scaling technique. 

 
(d). KNN Performance metrics and processing time for scaling technique and 

PCA. 

 
(e). SVM Performance metrics and processing time for scaling technique and 

LDA. 

 

Fig. 3. (f) KNN Performance metrics and processing time for scaling 

technique and LDA. 

V. CONCLUSION 

This study provides a comprehensive evaluation of SVM and 
KNN algorithms, emphasizing their optimization for mobile 
health applications in cloud environments. Through systematic 
testing with various preprocessing techniques, such as scaling 
(Standard Scaler, Min-Max Scaler) and dimensionality 
reduction (PCA, LDA), the findings demonstrate significant 
improvements in both accuracy and processing efficiency. 
These optimizations address the unique constraints of mHealth 
systems, such as the need for real-time responsiveness and 
resource efficiency, making SVM and KNN suitable for 
applications like remote patient monitoring, chronic disease 
management, and telemedicine. The study highlights the critical 
role of preprocessing in reducing computational overhead, 
improving latency, and enhancing the scalability of cloud-based 
healthcare systems. While this work primarily focuses on 
preprocessing-driven optimization, it opens several avenues for 
future research. These include integrating deep learning models 
with classical classifiers, performing systematic hyperparameter 
tuning (e.g., grid search, Bayesian optimization), and applying 
statistical validation techniques to reinforce the robustness of 
results. Additionally, exploring adaptive preprocessing 
strategies that evolve in real-time with streaming health data 
could further improve model responsiveness in dynamic 
mHealth scenarios. Expanding the evaluation to include diverse 
datasets and multi-device deployment environments would also 
contribute to validating the generalizability of the proposed 
approach. 
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