
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

660 | P a g e

www.ijacsa.thesai.org

Enhancing SVM and KNN Performance Through

Preprocessing Pipelines for Interactive mHealth

Applications

Btissam Elaziz1, Charaf Eddine AIT ZAOUIAT2, Mohamed Eddabbah3*, Yassin LAAZIZ4

LabTIC-ENSA of Tangier, Abdelmalek Essaadi University, Morocco1, 4

Polydisciplinary Faculty of Sidi Bennour, Chouaîb Doukkali University, Morocco2

Higher School of Technology – Essaouira, Cadi Ayyad University, Marrakesh, Morocco3

Abstract—Mobile health (mHealth) applications are

increasingly relying on artificial intelligence (AI) to provide

accurate and real-time decision support for healthcare delivery.

However, achieving the optimal balance between processing time

and accuracy remains challenging, especially for interactive

applications that rely on cloud computing for scalability and

performance. This study investigates the impact of data

preprocessing techniques on the performance of two widely used

machine learning algorithms, Support Vector Machine (SVM) and

k-Nearest Neighbors (KNN), in cloud-based mHealth systems. We

evaluate the effects of various scaling methods and dimensionality

reduction techniques, on processing time and model accuracy. Our

results demonstrate that preprocessing significantly improves

model performance, with SVM achieving a precision of 0.72 and a

processing time of 0.087 ms using StandardScaler, while KNN

demonstrates the fastest processing times when paired with robust

preprocessing. These findings underscore the importance of

optimizing both data preparation and algorithmic efficiency for

interactive mHealth applications. By enhancing model accuracy

and reducing latency, this research contributes to the development

of cost-effective, real-time mobile health systems that improve user

experience and decision-making in healthcare.

Keywords—Mobile health; cloud computing; machine learning;

SVM; KNN; data preprocessing

I. INTRODUCTION

The rapid advancements in mobile technology and AI have
revolutionized the healthcare sector, giving rise to Mobile
Health (mHealth) applications [1]. These applications leverage
the portability of mobile devices and the analytical power of AI
to provide real-time health monitoring, personalized
diagnostics, and predictive analytics [2]. mHealth solutions have
become indispensable tools in addressing global healthcare
challenges, offering services such as remote patient monitoring,
chronic disease management, and telemedicine consultations
[3]. At the core of this transformation is the reliance on AI
algorithms, which analyze vast amounts of data to deliver
actionable insights. However, the computational demands of
these algorithms often exceed the capabilities of mobile devices,
especially in resource-constrained environments [4].

To address this limitation, cloud computing has emerged as
a crucial enabler, providing scalable, cost-effective platforms
that offload complex computations from mobile devices to
powerful cloud servers [5]. By utilizing cloud platforms,

mHealth applications can perform sophisticated AI-driven tasks
such as processing high-dimensional data, running predictive
models, and delivering real-time decision support without
compromising the user experience. This synergy between AI
and cloud computing allows for greater efficiency, enabling
mHealth applications to cater to the growing demand for fast,
reliable, and accurate healthcare solutions [6]. As mHealth
continues to expand its reach, optimizing the interplay between
AI and cloud platforms will be pivotal in meeting the
performance, scalability, and cost requirements of these
applications.

In mHealth, real-time interactive mobile systems have
become critical in delivering timely and accurate healthcare
services, such as chronic disease management, remote patient
monitoring, and emergency decision support [7]. These systems
rely heavily on AI algorithms to process large volumes of health
data, often under stringent time constraints. However, achieving
the delicate balance between processing time and accuracy
presents significant challenges. Mobile devices, constrained by
limited computational resources, depend on cloud platforms to
execute complex AI algorithms.

This dependency [8] introduces latency concerns due to data
transmission, processing, and response times, which can
compromise the system's responsiveness—an essential feature
for real-time health applications. Simultaneously, ensuring high
accuracy is vital, as errors in AI predictions can lead to incorrect
diagnoses or treatment decisions, directly impacting patient
safety and trust. Additionally, the performance of AI models is
heavily influenced by data preprocessing techniques, which are
necessary for improving model efficiency but can also increase
computational overhead [9]. For interactive mHealth systems,
the trade-offs between optimizing preprocessing pipelines,
minimizing cloud processing costs, and maintaining real-time
responsiveness remain poorly addressed. Thus, the key
challenge lies in optimizing AI model performance to deliver
accurate and timely results while ensuring scalability and cost-
efficiency in cloud-based environments. Addressing these
challenges is essential for advancing mHealth solutions and
providing seamless, reliable healthcare services to users
worldwide.

This study addresses the key challenges of deploying AI in
mHealth by focusing on the optimization of Support Vector
Machine (SVM) and k-Nearest Neighbors (KNN) algorithms in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

661 | P a g e

www.ijacsa.thesai.org

terms of data preprocessing, cloud integration, and real-time
performance, with the goal of improving both patient outcomes
and operational efficiency. SVM and KNN have been selected
for their proven effectiveness in medical data classification, low
implementation complexity, and robust performance on small to
medium-sized datasets, which are common in mHealth
applications. Their computational simplicity and compatibility
with cloud-based architectures make them particularly suitable
for real-time, scalable health systems that require both accuracy
and efficiency. Moreover, the contrast between their learning
paradigms—margin-based optimization for SVM versus
instance-based learning for KNN—offers a valuable
comparative framework for assessing preprocessing strategies
and deployment trade-offs.

The primary aim of this study is to evaluate and optimize the
performance of SVM and KNN algorithms for interactive
mHealth AI systems deployed on cloud infrastructure.
Specifically, the study seeks to:

 Analyze the Impact of Preprocessing Techniques:
Investigate how various data preprocessing methods,
such as scaling and dimensionality reduction, influence
the accuracy and processing time of SVM and KNN
models in a cloud-based environment.

 Optimize Algorithm Efficiency: Identify preprocessing
pipelines and configurations that achieve the best
trade-off between accuracy and processing time,
ensuring the feasibility of real-time decision-making for
mHealth applications.

 Enhance Scalability and Responsiveness: Explore how
optimized AI models, combined with cloud computing
resources, can improve the scalability and
responsiveness of mHealth systems, ultimately reducing
latency and enhancing user experience.

Through these objectives, the study aims to provide
actionable insights for designing cost-effective, accurate, and
efficient mHealth systems that improve user experience and
leverage the power of cloud-based AI for real-time healthcare
delivery.

This study is organized as follows: Following the
introduction, the Section II provides a literature review to set the
context. Section III presents the methodology. Section
IVdiscusses the results; and Section V concludes the study.

II. LITERATURE REVIEW

AI applications in mHealth heavily rely on cloud computing
to address the computational constraints of mobile devices,
enabling advanced functionalities and seamless performance.
Cloud platforms provide scalability, allowing them to process
vast datasets and support a growing user base without
compromising efficiency or performance. Additionally, cloud
computing ensures secure data storage and facilitates easy
access to patient information for authorized users, maintaining
the privacy and integrity of sensitive health data [10]. These
capabilities make cloud computing an indispensable backbone
for AI-driven mHealth solutions, supporting their scalability,
responsiveness, and security requirements.

SVM and KNN are widely used machine-learning
algorithms in health- related research due to their simplicity,
robustness, and effectiveness in handling diverse types of
medical data [11]. SVM excels in analyzing high-dimensional
datasets, a common characteristic of medical records, and
performs reliably even with small training datasets, thanks to its
ability to create clear class boundaries through kernel functions.
SVM has been successfully applied in diagnosing diseases such
as diabetes, cancer, and cardiovascular conditions, often
achieving high accuracy, as demonstrated with the PIMA Indian
Diabetes dataset. Its application extends to medical image
analysis, including tumor detection, brain abnormalities, and
retinal scans, and to genomic and proteomic data, where it
identifies genetic markers and classifies diseases based on gene
expression. However, while SVM is highly effective when
dataset margins are clear, it may struggle with imbalanced
datasets unless enhanced with techniques like cost-sensitive
learning [12]. KNN, on the other hand, is a non-parametric
algorithm that relies on the proximity of data points, making it
particularly suitable for heterogeneous medical datasets. It is
valued in clinical settings for its simplicity and interpretability,
with applications including disease classification (e.g., diabetes,
heart disease), medical decision support through patient record
comparisons, and patient similarity assessments for personalized
treatment planning. While KNN performs well with smaller
datasets and clean, normalized data, it becomes computationally
intensive as dataset sizes grow, requiring preprocessing and
dimensionality reduction techniques like PCA or LDA [13].
When comparing the two, SVM generally outperforms KNN in
high-dimensional and smaller datasets due to its mathematical
rigor and margin maximization principle. However, KNN offers
simplicity and ease of implementation, making it attractive for
specific applications despite its higher computational demands
for large datasets. Both algorithms benefit from preprocessing
techniques, such as normalization and dimensionality reduction,
which significantly enhance their performance and make them
highly applicable in health AI applications. Together, SVM and
KNN provide complementary strengths, supporting diverse
healthcare tasks, from diagnostics to personalized medicine.

Research on SVM and KNN algorithms, and their
optimization for mHealth applications challenges include the
limited computational resources of mobile devices, the need for
real-time processing, and the lack of detailed evaluations on
integrating local preprocessing with cloud-based AI execution
[14][15]. Existing studies also insufficiently address the
application of preprocessing techniques to dynamic and
heterogeneous mHealth datasets and overlook scalability and
user experience for large user bases [16]. These gaps hinder the
effective implementation of SVM and KNN in mHealth, where
real-time accuracy, efficiency, and scalability are crucial [17].

III. METHODOLOGY

A. Dataset Description: PIMA Indian Diabetes Dataset

The PIMA Indian Diabetes dataset [18], sourced from the
National Institute of Diabetes and Digestive and Kidney
Diseases, is a widely used benchmark for machine learning
studies in healthcare. It comprises medical data collected from
768 female patients of Pima Indian heritage, aged 21 years or
older. The dataset aims to predict the presence of diabetes based

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

662 | P a g e

www.ijacsa.thesai.org

on diagnostic measurements, making it particularly relevant for
studies in mHealth applications. Table I summarizes the
dataset's predictor variables.

TABLE I. THE DATASET INCLUDES THE FOLLOWING PREDICTOR

VARIABLES AND TARGET VARIABLE

Feature Description Data Type

Pregnancies Number of pregnancies. int64

Glucose
Plasma glucose concentration (mg/dL)
after a 2-hour oral glucose tolerance test.

int64

Blood Pressure Diastolic blood pressure (mm Hg). int64

Skin Thickness Triceps skinfold thickness (mm). int64

Insulin 2-hour serum insulin (mu U/mL). int64

BMI Body Mass Index (kg/m²). float64

Diabetes Pedigree
Function

A score representing the likelihood of
diabetes based on family history. float64

Age Age of the individual. int64

Outcome
Binary target variable indicating
diabetes diagnosis (1 = diabetic, 0 =

non-diabetic).

int64

B. Data Preprocessing Techniques

Preprocessing techniques are critical for improving
the performance and efficiency of machine learning models as
shown in Fig. 1.

This study utilizes various preprocessing methods, including
scaling techniques and dimensionality reduction methods, to
prepare the data for effective application of SVM and KNN
algorithms. These techniques address challenges such as feature
imbalance, computational efficiency, and overfitting, ensuring
optimized performance in cloud-based mobile health mHealth
applications [19].

1) Data scaling techniques

a) Standard Scaler (SS): The Standard Scaler technique

is a data preprocessing method used to standardize the features

of a dataset. It transforms the data such that it has zero mean

and unit variance. This technique is commonly used in machine

learning algorithms to ensure that all features are on a similar

scale, which can improve the performance of the models. 𝑧 is

the standardized value of a feature; 𝑥 is the original value of the

feature; 𝜇 is the mean of the feature and σ is the standard

deviation of the feature. A value 𝑥 is transformed (scaled) into

𝜎 using Eq. (1):

𝑧 =
𝑥−𝜇

𝜎

Fig. 1. Overview of various data preprocessing techniques.

b) Min-Max Scaler (MMS): Min-max scaler is a data

normalization technique that transforms the values of a dataset

to a specific range, typically between 0 and 1. It is calculated

using Eq. (2):

 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛

where, 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 is the scaled value, X is the original value,
𝑋𝑚𝑖𝑛 is the minimum value in the dataset, and 𝑋𝑚𝑎𝑥 is the
maximum value in the dataset.

c) Maximum Absolute Scaler (MAS): The Maximum

Absolute Scaler is a method used to transform numerical data

into a range between 0 and 1. This is achieved by dividing each

value by the maximum absolute value present in the dataset. It

can be mathematically expressed asashown in Eq. (3):

 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥

𝑚𝑎𝑥(|𝑥|)
(3)

where, 𝑥 represents the original value and 𝑋𝑠𝑐𝑎𝑙𝑒𝑑
represents the transformed value.

d) Robust Scaler (RS): The three scaling techniques

mentioned earlier are highly affected by outliers because they

rely on each variable's mean or minimum and maximum values.

However, the Robust Scaler aims to reduce the impact of

outliers by centering the data on the median 𝑄2(𝑥) and scaling

it based on the interquartile range, which is the difference

between the first quartile 𝑄1(𝑥) and the third quartile 𝑄3(𝑥) of

x, as shown in Eq. (4):

 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑄2(𝑥)

𝑄3(𝑥) −𝑄1(𝑥)
(4)

e) Quantile Transformer (QT): The Quantile

Transformer is a statistical technique that transforms a dataset's

distribution to a desired target distribution by mapping original

data values to new values. It is valuable for scenarios like data

normalization, outlier mitigation, and preparation for statistical

models. The Quantile Transformer can be represented by Eq.

(5):

𝑌 = (𝐹𝑡𝑎𝑟𝑔𝑒𝑡
−1 (𝐹𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 (𝑥))) (5)

where, 𝐹𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the cumulative distribution function

(CDF) of the original dataset, and 𝐹𝑡𝑎𝑟𝑔𝑒𝑡
−1 is the inverse CDF of

the desired target distribution.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

663 | P a g e

www.ijacsa.thesai.org

f) Normalization (N): A normalizer standardizes values

to a uniform scale, aiding comparison by removing scale

disparities, often expressed as Eq. (6). This equation scales

values from 0 to 1, adjusting the minimum to 0 and the

maximum to 1. Other techniques may employ varied equation

depending on data needs.

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =
𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒
 (6)

2) Dimension reduction techniques

a) Principal Component Analysis (PCA): PCA is a

widely used statistical technique in multivariate analysis,

primarily employed for dimensionality reduction and data

compression [20]. Its main goal is to identify patterns,

emphasizing similarities and differences in the data while

preserving most of the original variations. PCA achieves four

main objectives: extracting relevant information, compressing

data by retaining distinguishing features, simplifying data

description, and enabling analysis of observational structure.

Eq. (7), which calculates variance (var(x)), is integral to PCA.

𝑣𝑎𝑟(𝑥) =
∑(𝑥𝑖−𝑥)

2

𝑁

b) Linear Discriminant Analysis (LDA): Linear

Discriminant Analysis (LDA) is a statistical technique for both

dimensionality reduction and classification [21]. It aims to find

a linear combination of features that maximizes class

separability by maximizing the ratio of between-class and

within-class scatters. LDA is widely applied in pattern

recognition, machine learning, and data mining, seeking a

projection vector that optimizes between-class scatter while

minimizing within-class scatter. The between-class scatter

matrix 𝑆𝐵 is calculated by Eq. (8):

 𝑆𝐵 = (𝑚𝑒𝑎𝑛(𝑋𝑐) − 𝑚𝑒𝑎𝑛(𝑋)) ∗ (𝑚𝑒𝑎𝑛(𝑋𝑐) − 𝑚𝑒𝑎𝑛(𝑋))
𝑇

where, mean (𝑋𝑐) is the mean vector of each class and
mean(𝑋) is the mean vector of the entire dataset.

The within-class scatter matrix 𝑆𝑤 is calculated using Eq.
(9):

 𝑆𝑤 = ∑(𝑋𝑖 − 𝑚𝑒𝑎𝑛(𝑋𝑖)) ∗ (𝑋𝑖 − 𝑚𝑒𝑎𝑛(𝑋𝑖))
𝑇

where, Σ represents the summation of all samples in each
class.

The goal of LDA is to find the projection vector w that
maximizes Fisher's criterion, as given in Eq. (10):

J(w) = (wT ∗ SB ∗ w)/(wT ∗ Sw ∗ w)

The solution to this optimization problem can be obtained by
finding the eigenvectors corresponding to the largest
eigenvalues of the matrix inverse of (𝑆𝑤)−1 ∗ 𝑆𝐵 . Once the
projection vector w is obtained, it can be used to project new
samples onto the linear discriminant space for classification or
dimensionality reduction purposes.

c) SVM algorithm: SVM is an ML algorithm that finds

the best line or plane to separate different classes of data points,

as shown in Algorithm 1. It uses a subset of training data called

support vectors to determine this line or plane. SVM can handle

both linear and non-linear data by using different kernel

functions. One of its advantages is its ability to handle high-

dimensional data without overfitting. It can also work well with

small training samples. SVM has been extensively studied and

improved with different techniques such as using different

kernels and handling imbalanced datasets. Overall, SVM is a

powerful and widely used technique for classification problems

[22].

Algorithm 1: Pseudo code of the SVM algorithm

Set 𝐼𝑛𝑝𝑢𝑡 = (𝑥𝑖 , 𝑦𝑖) where 𝑖 = 1,2,3, … . , 𝑁 , 𝑥𝑖 = 𝑅𝑛 and 𝑦𝑖 =
{+1, −1}.

Assign 𝑓(𝑋) = 𝜔𝑇𝑥𝑖 + 𝑏 = ∑ 𝜔𝑇𝑥𝑖𝑁
𝑖=1 + 𝑏 = 0.

Minimize the QP problem as, 𝜑(𝜔, 𝜀) =
1

2
‖𝜔‖2 + 𝐶. (∑ 𝜀𝑖

𝑁
𝑖).

Calculate the dual Lagrangian multipliers as 𝑚𝑖𝑛𝐿𝑝 =
1

2
‖𝜔‖2 −

∑ 𝑥𝑖𝑦𝑖(𝜔𝑥𝑖 + 𝑏)𝑁
𝑖=1 +∑ 𝑥𝑖

𝑁
𝑖=1 .

Calculate the dual quadratic optimization (QP) problem as 𝐿𝐷 =

∑ 𝑥𝑖
𝑁
𝑖=1 −

1

2
∑ 𝑥𝑖𝑥𝑗 𝑦𝑖𝑦𝑗(𝑥𝑖 , 𝑥𝑗)𝑁

𝑖,𝑗 .

Solve dual optimization problem as ∑ 𝑦𝑖𝑥𝑖
𝑁
𝑖=1 = 0.

Output the classifier as 𝑓(𝑋) = 𝑠𝑔𝑛 (∑ 𝑥𝑖𝑦𝑖(𝑥. 𝑥𝑖)𝑁
𝑖=1 +

∑ 𝑥𝑗𝑦𝑗(𝑥. 𝑥𝑗)𝑁
𝑖=1)

d) KNN algorithm: K-Nearest Neighbors (KNN) is a

classification algorithm that assigns the label of a classified data

point to an unclassified data point that is closest to it. This is

done by considering the majority class of its K nearest data

points. The distance between data points is typically measured

using Euclidean distance (DE) or Manhattan distance (DM)

[23] as shown in Algorithm 2:

Algorithm 2: Pseudo code of the KNN algorithm

Input: X: training data, Y: class labels of X, K: number of nearest

neighbors.

Output: Class of a test sample x.

Start

Classify (𝑋, 𝑌, 𝑥)

For each sample x do

Calculate the distance: 𝑑(𝑥, 𝑋) = √∑ (𝑥𝑖 − 𝑋𝑖)2𝑛
𝑖=1

End for

Classify x in the majority class: 𝐶(𝑥𝑖) =

𝑎𝑟𝑔𝑚𝑎𝑥𝑘 ∑ 𝑥𝑗∈𝐾𝑁𝑁𝐶(𝑋𝑗 , 𝑌𝑘)

End

e) Experimental design: The experimental design

systematically evaluates the performance of SVM and KNN

models in cloud-based mHealth systems, focusing on how

preprocessing techniques affect accuracy and processing time

(Fig. 2). Initially, baseline testing is conducted without

preprocessing to establish reference metrics, including

accuracy, precision, recall, F1-score, and processing time,

highlighting limitations like bias from feature magnitudes and

inefficiencies from data redundancy. Next, the impact of

scaling techniques, such as Standard Scaler, Min-Max Scaler,

Robust Scaler, and Quantile Transformer, is assessed by

applying each method to the dataset and evaluating

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

664 | P a g e

www.ijacsa.thesai.org

performance metrics. This step identifies effective scaling

methods for reducing bias and improving efficiency.

Dimensionality reduction techniques, including Principal

Component Analysis (PCA) and Linear Discriminant Analysis

(LDA), are then evaluated to understand their influence on

computational cost and classification accuracy. PCA retains

components with the most variance, while LDA maximizes

class separability, both offering insights into trade-offs between

efficiency and performance. Finally, combined testing explores

the interaction between scaling and dimensionality reduction,

with pipelines like Standard Scaler + PCA and Min-Max Scaler

+ LDA being tested to optimize preprocessing for real-time

mHealth applications. This comprehensive approach ensures a

balance between accuracy and processing time, enabling

scalable and efficient model deployment.

Fig. 2. Experimental Design

f) Metrics collected: Performance Metrics: Accuracy,

precision, recall, F1-score.

 Efficiency Metrics: Processing time (measured in
milliseconds).

 Trade-off Analysis: Evaluate the trade-offs between
computational efficiency and model accuracy.

g) Computational environment: The experiments were

conducted in a computational environment designed to

replicate typical resource-constrained scenarios found in

mHealth applications. This setup ensures the findings apply to

real-world cloud-based systems supporting mHealth platforms.

 Hardware: Processor: AMD Ryzen 5 5500U CPU with
Radeon Graphics, 2.10 GHz. Memory: 8 GB of RAM.

 Software: Programming Language: Python 3.8.

IV. RESULTS AND ANALYSIS

The study evaluates the performance of SVM and KNN
under various preprocessing scenarios, focusing on the
following metrics: Processing Time (in milliseconds),
Accuracy, Precision, Recall, and F1-Score.

The experiments demonstrate how scaling techniques and
dimensionality reduction methods affect the efficiency and
accuracy of these algorithms when applied to a health-related
dataset.

A. Performance Without Preprocessing

As shown in Table II, SVM performs better than KNN in
terms of accuracy (0.71 vs. 0.69) and is faster (0.063 ms vs. 0.13

ms). Without preprocessing, the data may contain bias and
unnecessary information, making the model less efficient. This
shows that preprocessing is important to improve speed and
performance.

TABLE II. METRICS FOR SVM AND KNN

Metric Accuracy Precision Recall F1-Score
Processing

Time (ms)

SVM 0.71 0.70 0.71 0.69 0.063

KNN 0.69 0.69 0.69 0.69 0.13

B. Performance only with Scaling Techniques

Table III presents the impact of different scaling methods on
the performance of SVM and KNN. Scaling significantly
improves both accuracy and processing time for the two models.
For SVM, the Min-Max Scaler achieves the highest accuracy
(0.73) with a moderate processing time of 0.12 ms, while the
Standard Scaler offers a good trade-off between accuracy (0.72)
and faster processing (0.087 ms). In the case of KNN, the
Standard Scaler provides the best accuracy (0.75) along with
efficient processing (0.085 ms), making it particularly suitable
for real-time applications. Although the Quantile Transformer
yields moderate accuracy, its higher computational cost reduces
its practicality. These results demonstrate that the choice of
scaling method directly influences model performance and
efficiency.

TABLE III. METRICS FOR SVM AND KNN WITH SCALING TECHNIQUES

Scaling

Technique

Standard

Scaler

MinMax

Scaler

Robust

Scaler

Quantile

Transformer

Metric

A
ccu

racy

P
ro

cessin
g

T
im

e (m
s)

A
ccu

racy

P
ro

cessin
g

T
im

e (m
s)

A
ccu

racy

P
ro

cessin
g

T
im

e (m
s)

A
ccu

racy

P
ro

cessin
g

T
im

e (m
s)

SVM 0.72 0.087 0.73 0.12 0.66 0.13 0.71 0.42

KNN 0.75 0.085 0.73 0.12 0.68 0.063 0.74 0.13

C. Performance only with Dimensionality Reduction

Table IV shows that LDA outperforms PCA for both SVM
and KNN. SVM with LDA achieves higher accuracy (0.74) and
faster processing (0.085 ms) than with PCA. KNN also performs
better and faster with LDA (0.047 ms). LDA’s strength in
maximizing class separability explains its superior results,
making it the preferred choice for this dataset.

TABLE IV. METRICS FOR SVM AND KNN WITH PCA AND LDA

Metric
SVM +

PCA

SVM +

LDA

KNN +

PCA

KNN +

LDA

Precision 0.70 0.73 0.64 0.69

Recall 0.71 0.74 0.66 0.69

F1-score 0.69 0.73 0.65 0.69

Accuracy 0.71 0.74 0.66 0.69

Processing time (ms) 0.092 0.085 0.1 0.047

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

665 | P a g e

www.ijacsa.thesai.org

D. Performance with Dimensionality Reduction and Scaling

Techniques

Table V shows that combining scaling and dimensionality
reduction improves performance. For SVM with PCA, Min-
Max Scaler gives the best accuracy (0.73), while Standard Scaler
is faster (0.087 ms). For KNN with PCA, Min-Max Scaler has
the highest precision (0.75), but Robust Scaler is more efficient
(0.063 ms). With LDA, Standard Scaler provides the best
accuracy and fastest processing, especially for SVM (0.041 ms).

TABLE V. METRICS FOR SVM WITH PCA AND SCALING TECHNIQUES

Scaling

Technique

M
a

x
-A

b
s

S
c
a

le
r

M
in

-M
a
x

S
c
a

le
r

N
o

r
m

a
lize

r

Q
u

a
n

tile

T
ra

n
sfo

rm
er

R
o

b
u

st S
ca

ler

S
ta

n
d

a
r
d

S
c
a

le
r

Precision 0.71 0.72 0.42 0.71 0.66 0.72

Recall 0.71 0.73 0.65 0.71 0.67 0.73

F1-Score 0.71 0.73 0.65 0.71 0.67 0.73

Processing

time (ms)
0.12 0.12 0.14 0.42 0.13 0.087

TABLE VI. METRICS FOR KNN WITH PCA AND SCALING TECHNIQUES

Scaling

Technique

M
a
x
-A

b
s

S
ca

ler

M
in

-M
a
x

S
ca

ler

N
o
rm

a
lizer

Q
u

a
n

tile

T
ra

n
sfo

rm
er

R
o
b

u
st

S
ca

ler

S
ta

n
d

a
rd

S
ca

ler

Precision 0.71 0.75 0.66 0.74 0.68 0.75

Recall 0.69 0.73 0.66 0.74 0.68 0.75

F1-Score 0.69 0.73 0.66 0.74 0.68 0.75

Processing

time(ms) 0.13 0.12 0.11 0.13 0.063 0.085

Table VI shows that for KNN with PCA, Min-Max and
Standard Scalers achieve the best metrics (0.75), with Standard
Scaler being faster (0.085 ms). Robust Scaler is the most
efficient (0.063 ms) but slightly less accurate. Normalizer
performs worst (0.66). This highlights Standard Scaler as the
best balance of accuracy and speed.

TABLE VII. METRICS FOR SVM WITH LDA AND SCALING TECHNIQUES

Scaling

Technique

M
a

x
-A

b
s

S
c
a

le
r

M
in

-M
a
x

S
c
a

le
r

N
o

r
m

a
lize

r

Q
u

a
n

tile

T
ra

n
sfo

rm
er

R
o

b
u

st

S
c
a

le
r

S
ta

n
d

a
r
d

S
c
a

le
r

Precision 0.73 0.73 0.65 0.73 0.73 0.73

Recall 0.74 0.74 0.68 0.74 0.74 0.74

F1-Score 0.73 0.73 0.64 0.73 0.73 0.73

Processing

time(ms)
0.063 0.08 0.1 0.12 0.085 0.041

Table VII shows that for SVM with LDA, all scaling
techniques except Normalizer achieve strong and consistent
metrics (precision, recall, F1-score ≈ 0.73–0.74). Standard
Scaler offers the best processing time (0.041 ms), making it the
most efficient. Normalizer performs the worst across all metrics.

These results highlight Standard Scaler as the most effective
option when combining LDA with SVM.

TABLE VIII. METRICS FOR KNN WITH LDA AND SCALING TECHNIQUES

Scaling

Technique

M
a

x
-A

b
s

S
c
a

le
r

M
in

-M
a
x

S
c
a

le
r

N
o

r
m

a
lize

r

Q
u

a
n

tile

T
ra

n
sfo

rm
er

R
o

b
u

st

S
c
a

le
r

S
ta

n
d

a
r
d

S
c
a

le
r

Precision 0.69 0.69 0.69 0.69 0.69 0.69

Recall 0.69 0.69 0.69 0.71 0.69 0.69

F1-Score 0.69 0.69 0.69 0.69 0.69 0.69

Processing

time(ms)
0.07 0.072 0.063 0.084 0.047 0.032

Table VIII shows that KNN with LDA performs consistently
across all scaling techniques, with precision, recall, and F1-score
around 0.69. Quantile Transformer slightly improves recall
(0.71), while Standard Scaler provides the fastest processing
time (0.032 ms). These results indicate that although
performance is similar, Standard Scaler is the most efficient.

Fig. 3(a) compares SVM and KNN accuracy and processing
time with various scalers. Standard and Min-Max Scalers yield
the highest accuracy, but Standard Scaler is fastest. Quantile
Transformer is accurate but much slower.

Fig. 3(b) presents the performance of SVM and KNN using
PCA and LDA. Both dimensionality reduction techniques yield
comparable results across precision, recall, F1-score, and
accuracy. However, LDA shows better efficiency, especially
with KNN, offering lower processing time.

Fig. 3(c) shows SVM performance using different scaling
techniques, with PCA Standard Scaler and MinMax Scaler
achieving high precision, recall, and F1-score, while Standard
Scaler has the lowest processing time. In contrast, Quantile
Transformer offers good metrics but with the highest time cost.

Fig. 3(d) shows that QuantileTransformer offers the best
KNN performance but is the slowest, while RobustScaler is
fastest with lower accuracy StandardScaler and MinMaxScaler
provide a good balance between performance and processing
time.

Fig. 3(e) shows that QuantileTransformer gives the best
SVM performance but with the highest processing time, while
StandardScaler is the fastest with strong accuracy. Other scalers
like MinMaxScaler and RobustScaler offer a balanced trade-off
between performance and speed.

Fig. 3(f) shows that QuantileTransformer gives the highest
KNN performance with LDA but takes the longest time to
process. StandardScaler is the fastest and still maintains strong
performance. Other scalers like MinMaxScaler and
RobustScaler also show consistent accuracy with lower
processing times, indicating good overall efficiency.

The findings in Fig. 3(a) to Fig. 3(f), highlight the practical
implications of combining preprocessing with SVM and KNN
to optimize mHealth applications. This approach enhances real-
world applicability in areas such as remote patient monitoring,
enabling real-time analysis of wearable data; chronic disease

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

666 | P a g e

www.ijacsa.thesai.org

management, supporting early detection and personalized care;
and telemedicine, improving the speed and reliability of virtual
consultations. Faster processing times, such as 0.041 ms for
SVM with LDA, ensure responsive systems that reduce delays
in delivering critical insights, improving user trust and
scalability through efficient resource utilization. Moreover,
optimized preprocessing pipelines facilitate real-time
predictions, enabling immediate feedback in critical scenarios
like glucose monitoring or irregular heart rhythm detection. This
responsiveness empowers healthcare professionals to make
timely interventions, enhancing patient outcomes and advancing
the efficiency of mHealth solutions.

(a). Accuracy and processing time for scaling technique.

(b). Performance metrics with PCA and LDA.

(c). SVM Performance metrics and processing time for scaling technique.

(d). KNN Performance metrics and processing time for scaling technique and

PCA.

(e). SVM Performance metrics and processing time for scaling technique and

LDA.

Fig. 3. (f) KNN Performance metrics and processing time for scaling

technique and LDA.

V. CONCLUSION

This study provides a comprehensive evaluation of SVM and
KNN algorithms, emphasizing their optimization for mobile
health applications in cloud environments. Through systematic
testing with various preprocessing techniques, such as scaling
(Standard Scaler, Min-Max Scaler) and dimensionality
reduction (PCA, LDA), the findings demonstrate significant
improvements in both accuracy and processing efficiency.
These optimizations address the unique constraints of mHealth
systems, such as the need for real-time responsiveness and
resource efficiency, making SVM and KNN suitable for
applications like remote patient monitoring, chronic disease
management, and telemedicine. The study highlights the critical
role of preprocessing in reducing computational overhead,
improving latency, and enhancing the scalability of cloud-based
healthcare systems. While this work primarily focuses on
preprocessing-driven optimization, it opens several avenues for
future research. These include integrating deep learning models
with classical classifiers, performing systematic hyperparameter
tuning (e.g., grid search, Bayesian optimization), and applying
statistical validation techniques to reinforce the robustness of
results. Additionally, exploring adaptive preprocessing
strategies that evolve in real-time with streaming health data
could further improve model responsiveness in dynamic
mHealth scenarios. Expanding the evaluation to include diverse
datasets and multi-device deployment environments would also
contribute to validating the generalizability of the proposed
approach.

REFERENCES

[1] A. A. Salameh, I. A. Abu-AlSondos, N. H. Abu, and A. Nahar Harun,
“Current Knowledge and Future Possibilities of Medical Digital
Technologies based on Mobile Health”, Int. J. Interact. Mob. Technol.,
vol. 17, no. 17, pp. pp. 134–147, Sep. 2023.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

667 | P a g e

www.ijacsa.thesai.org

[2] R. Jeya, Hezerul Abdul Karim, and Sarina Binti Mansor, “Artificial
Intelligence and Mobile Apps Support Intelligent Healthcare Systems for
Mental Health Services ”, Int. J. Interact. Mob. Technol., vol. 18, no. 20,
pp. pp. 157–168, Oct. 2024.

[3] M. Eddabbah, M. Moussaoui, and Y. Laaziz, "A smart architecture design
for health remote monitoring systems and heterogeneous wireless sensor
network technologies: a machine learning breathlessness prediction
prototype," *International Journal of Intelligent Enterprise*, vol. 6, no. 2-
4, pp. 293-310, 2019.

[4] T. S. Ajani, A. L. Imoize, and A. A. Atayero, "An overview of machine
learning within embedded and mobile devices—optimizations and
applications," *Sensors*, vol. 21, no. 13, pp. 4412, 2021.

[5] K. Akherfi, M. Gerndt, and H. Harroud, "Mobile cloud computing for
computation offloading: Issues and challenges," *Applied Computing and
Informatics*, vol. 14, no. 1, pp. 1-16, 2018.

[6] N. S. Hussien, S. Sulaiman, A. Aborujilah, M. Wibowo, and H. Samma,
“Scalability of Mobile Cloud Storage”, Int. J. Interact. Mob. Technol.,
vol. 15, no. 21, pp. pp. 199–206, Nov. 2021.

[7] A. S. Albahri, A. A. Zaidan, O. S. Albahri, B. B. Zaidan, and M. A.
Alsalem, "Real-time fault-tolerant mHealth system: Comprehensive
review of healthcare services, opens issues, challenges and
methodological aspects," *Journal of Medical Systems*, vol. 42, pp. 1-
56, 2018.

[8] Y. Deng, "Deep learning on mobile devices: a review," in *Mobile
Multimedia/Image Processing, Security, and Applications 2019*, vol.
10993, pp. 52-66, 2019.

[9] C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, "A review on data
preprocessing techniques toward efficient and reliable knowledge
discovery from building operational data," *Frontiers in Energy
Research*, vol. 9, pp. 652801, 2021.

[10] R. Sivan and Z. A. Zukarnain, "Security and privacy in cloud-based e-
health system," *Symmetry*, vol. 13, no. 5, pp. 742, 2021.

[11] Q. An, S. Rahman, J. Zhou, and J. J. Kang, "A comprehensive review on
machine learning in healthcare industry: classification, restrictions,
opportunities and challenges," *Sensors*, vol. 23, no. 9, pp. 4178, 2023.

[12] R. Guido, M. C. Groccia, and D. Conforti, "A hyper-parameter tuning
approach for cost-sensitive support vector machine classifiers," *Soft
Computing*, vol. 27, no. 18, pp. 12863-12881, 2023.

[13] A. AlKarawi and K. AlJanabi, "Data Reduction Techniques: A
Comparative Study," *Journal of Kufa for Mathematics and Computer*,
vol. 9, no. 2, pp. 1-17, 2022.

[14] M. Sudha, M. R. Muthukathan, G. B. H. Malini, R. Sankar, M. Mythily,
P. S. Kumaresh, M. N. V. Mageshkumar, and S. Shanmugam, "Predictive
modeling for healthcare worker well-being with cloud computing and
machine learning for stress management," *International Journal of
Electrical & Computer Engineering*, vol. 15, no. 1, 2025.

[15] A. H. Abdulazeez and A. M. Abdulazeez, "Integration of Machine
Learning with Fog Computing for Health Care Systems Challenges and
Issues: A Review," The Indonesian Journal of Computer Science, vol. 13,
no. 3, 2024.

[16] A. Deniz-Garcia, H. Fabelo, A. J. Rodriguez-Almeida, G. Zamora-
Zamorano, M. Castro-Fernandez, M. D. P. Alberiche Ruano, T. Solvoll,
C. Granja, T. R. Schopf, G. M. Callico, and C. Soguero-Ruiz, "Quality,
usability, and effectiveness of mHealth apps and the role of artificial
intelligence: current scenario and challenges," Journal of Medical Internet
Research, vol. 25, p. e44030, 2023.

[17] H. K. Bharadwaj, A. Agarwal, V. Chamola, N. R. Lakkaniga, V. Hassija,
M. Guizani, and B. Sikdar, "A review on the role of machine learning in
enabling IoT based healthcare applications," IEEE Access, vol. 9, pp.
38859-38890, 2021.

[18] V. Chang, J. Bailey, Q. A. Xu, and Z. Sun, "Pima Indians diabetes mellitus
classification based on machine learning (ML) algorithms," Neural
Computing and Applications, vol. 35, no. 22, pp. 16157-16173, 2023.

[19] Cetin, V., and O. Yildiz, "A comprehensive review on data preprocessing
techniques in data analysis," Pamukkale University Journal of
Engineering Sciences, vol. 28, no. 2, pp. 299-312, 2022.

[20] A. G. Oladepo, A. O. Bajeh, A. O. Balogun, H. A. Mojeed, A. A. Salman,
and A. I. Bako, “Heterogeneous Ensemble with Combined
Dimensionality Reduction for Social Spam Detection”, Int. J. Interact.
Mob. Technol., vol. 15, no. 17, pp. pp. 84–103, Sep. 2021.

[21] C. Zhang, M. Mei, Z. Mei, J. Zhang, A. Deng, and C. Lu, "PLDANet:
reasonable combination of PCA and LDA convolutional networks,"
International Journal of Computers Communications & Control, vol. 17,
no. 2, 2022.

[22] D. M. Abdullah and A. M. Abdulazeez, "Machine learning applications
based on SVM classification a review," Qubahan Academic Journal, vol.
1, no. 2, pp. 81-90, 2021.

[23] M. Suyal and P. Goyal, "A review on analysis of K-nearest neighbor
classification machine learning algorithms based on supervised learning,"
International Journal of Engineering Trends and Technology, vol. 70, no.
7, pp. 43-48, 2022.

